Hexham Partnership of Schools

Maths Calculation Policy

Reception - Year 6

Why we use a Mastery Approach to Maths in the Hexham Partnership.

We have high expectations.

We believe no child should be left behind. We focus on children 'keeping up over catching up'. By making high expectations clear - and emphasising the high value of mathematics education - learners are encouraged to build confidence and resilience

We believe in developing a growth mindset

Children's 'abilities' are neither fixed nor innate, but can be developed through practice, support, dedication and hard work. 'Natural talent' is just a starting point and does not determine who has more or less potential to achieve. This belief encourages a love of learning and resilience that enables everyone to achieve.

We believe children learn best by using a Concrete, pictorial, abstract approach

When faced with a key new concept children learn best and build confidence by using this approach

Concrete- Use of concrete objects and manipulatives to understand what they are doing
Pictorial - By using pictorial representations children are able to build on the understanding gained by using concrete objects.

Abstract- Once foundations are firmly laid children should then be able to move to an abstract approach using numbers and key concepts

We believe in depth before breadth

All learners benefit from deepening their conceptual understanding of mathematics, regardless of whether they've previously struggled or excelled. We believe children must be given time to fully understand, explore and apply ideas - rather than accelerate through new topics. This approach enables learners to truly grasp a concept, and the challenge comes from investigating it in new, alternative and more complex ways.

We believe in a problem solving approach to learning

Mathematical problem-solving is at the heart of our approach. Children are encouraged to identify, understand and apply relevant mathematical principles and make connections between different ideas. This builds the skills needed to tackle new problems, rather than simply repeating routines without grasping the principles.

We believe in the importance of using Mathematical language

The way children speak and write about mathematics transforms their learning. We use a carefully sequenced, structured approach to introduce and reinforce mathematical vocabulary. We always ask pupils to explain the mathematics in full sentences (not just what the answer is, but how they know it's the right answer). This is key to building mathematical language and reasoning skills.

Yr R Addition

ELG Expected Criteria:

- Count reliably to 20 and place in order
- Say one more than given number
- Add 2 single digit numbers using quantities and objects. Count on or back to find the answer.
- Solve problems including doubling

Big Ideas

1. 'Altogether' - children understand that by putting 2 groups together there is a total eg five pigs and 8 pigs makes 13 pigs altogether.
2. Counting on -eg, if a three is rolled whilst a player is on 5 , they count on three from five to reach eight. Although still recorded as $5+3=8$, this is not about combining $\mathbf{2}$ groups, but increasing a number.
3. Commutativity

Language	Concrete	Pictorial	Abstract
How many? before, after, next altogether add, more, plus sum total makes count on enough digit first second part whole double is the same as, is equal to	Opoortunities of everyday scenarios to develop concrete understanding of addition prior and as well as models eg: - boys + girls - dinner registers - shopping - scoring games - snack time - cooking Part-Whole models with real objects Combining two parts to make a whole (use other resources too e.g eggs, shells, teddy bears, cars). Familiarisation with ten frame and to help organise counting all	Recording calculations in their own ways to develop a solid understanding of the practical aspect of calculation before the use of symbols Part Whole Model - counting all of them to find total	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Yr R Subtraction

ELG Expected Criteria:

- Count reliably to 20 and place in order
- Say one less than given number
- Subtract 2 single digit numbers using quantities and objects and count back to find the answer.

Building Blocks

Building up an understanding of 3 main structures of subtraction.

1. 'Taking away' - you have five sweets and you eat tow, how many are left?
2. 'Difference' - you have three sweets and I have five, how many more do I have than you? This requires children to compare numbers to find how much more/fewer on has/is than the other.
3. 'Counting back' - I am on five, I move back two and I am now on three.

Language	Concrete	Pictorial	Abstract
How many/how many more take away subtract less fewer one less, two less..., ten less.. how many fewer is.... than..... count back part whole	Opportunities of everyday scenarios to develop concrete understanding of subtraction prior to and as well as models eg: - whole class take away who is absent - snack time - shopping - scoring games snack time - cooking Physically taking away and removing objects from a whole ten frames, Nurnicon, cubes and other items such as $4-3=1$ Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$	Recording calculations in their own ways to develop a solid understanding of the practical aspect of calculation before the use of symbols. eg 11 children are on the carpet and 3 have gone to wash their hands. Drawing a ten frame 10-1 Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	4-3= --4-3 Children become familiar with the image of a number line or track and use them to jump on or back

Yr 1 Addition and Subtraction

National Curriculum Program of Study

 StatementPupils should be taught to:
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
represent and use number bonds and related subtraction facts within 20
add and subtract one-digit and two-digit numbers to 20 , including zero
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square$- 9.

Language	Concrete	Pictorial	Abstract
add plus total more than altogether sum of is equal to one more addition facts to 10 then to 20 teen numbers	Combining two parts to make a whole Use numicon, counters, dienes, part whole bead strings Numicon	Adding more: the meaning of addition as an increase. encerle 纪路 [8 $8+1=9$	Number lines can be used to show addition as counting on Include addition that involves 0 Discussion about what each number represents in an addition calculation

Language	concrete	Pictoral	Abstract
	Tomentimer	$0_{5}^{5} 5$	${ }^{0.55=-23}$
		$\underset{\Delta}{s} \Delta \frac{0}{s}$	

Subtraction			
Language	Concrete	Pictorial	Abstract
Less than Fewer than Least Minus Difference between What is left? The meaning of subtraction as decrease			$7-3=?$

Yr 2 Addition and Subtraction

tional Curriculum Program of Study Statement:
solve problems with addition and subtraction:

- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods

Language	Concrete	Pictorial	Abstract
Part whole represent number bonds bar model plus Add total altogether sum of digits same as equal to	Combining two parts to make a whole Use numicon, dienes, tens frames, bead stri Counting on using number lines using cubes or Numicon.	Children to reperesent using dots on Part, Part Whole Model. Bar Model or dienes	$21+8$ = 29 21 is a part. 8 is a part, the whole is ε The abstract bar model or number line. 2 and what make $16 ?$ What is 2 more than 14 ? What is the sum o 2 and 14 ? What is the total of 14 and 2? $14+2=$ $14+\ldots \ldots=16$

Language	Concrete	Pictorial		Abstract	
Number bonds Addition, add Subtraction, subtract, take away Inverse equals		Tens		$\begin{aligned} & 18+2=20 \\ & 2+18=20 \\ & 20-18=2 \\ & 20-2=18 \end{aligned}$	2
National Curriculum Program of Study Statement: add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and 1 s		Big Ideas - When adding three or more numbers it is helpful to look for pairs of numbers that are easy to add. For example, given $5+8+2$ it is easier to add 8+2 first than to begin with $5+8$.			

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.
ods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10

00000000 $00000{ }^{2}+$

Children to present the ten frame pictorially and discuss what they did to make 10 .

Children to represent the base 10 pictorially.

Column method using base 10 and having to exchange.	
National Curriculum Program of Study Statement: - show that addition of 2 numbers can be done in any order (commutative) and subtraction of 1 number from another cannot	Big Ideas Understanding that addition of two or more numbers can be done in any order is important to support children's fluency. When adding two numbers it can be more efficient to put the larger number first. For example, given $3+8$ it is easier to calculate 8+3.

| Language | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Addition
 Subtraction
 Invers
 Order
 Equal to, same as | | | |

Language	Concrete	Pictorial	Abstract
Inverse Addition Subtraction Order Equal to Same as			$\begin{array}{\|c\|c\|} \hline 24-6=18 \\ 18+6=24 \\ \end{array}$

Yr3 Addition/Subtraction			
National Curriculum Program of Study Statement - to add and subtract numbers mentally, including: a 3 -digit number and ones a 3-digit number and tens a 3-digit number and hundreds		Big Ideas - Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. For example, given $8+7$, thinking of 7 as $2+5$, and adding the 2 and 8 to make 10 , then the 5 to 15 . This should then be applied when calculating with larger numbers.	
Language	Concrete	Pictorial	Abstract
Regroup Number bond Partition	 Start with the bigger number and use the smaller number to make 10. Relate this to larger numbers $236+5$	$\left\lvert\, \begin{aligned} & 277 \because+5=382 \\ & \ddots 03 \because \backslash \\ & 303 \because, 2 \end{aligned}\right.$	277+5=282 " 236 add 4 would make 240 add 1 more would make 24 " 233-5=228 233 subtract 5 . So I need to partition the 5 . 233 subtract 3 is 230 . Subtract 2 more would make 228 $\text { \| } 236+40=326$ I know I am adding units of 10 so the 10 s will change. $30+40=70$ $\text { \| } 286+40=326$ I know that 286 add 20 would make 306. Add the other 20 equals 326

Yr3 Formal Addition

National Curriculum Program of Study Statement

- to add and subtract numbers with up to three digits, using formal written methods of column addition and subtraction

Big Ideas

- Understanding of a unit of 1,10 and 100. To know that 10 ones is equal to 1 ten and so can be exchanged for 1 unit of 10
- To know the importance of rounding to estimate the answer.

Language	Concrete			
- Column addition/subtraction	No Regrouping			
- Formal written method	T			Use
- Regroup				
- Exchange/ carry		\bigcirc	\bullet	base
- Unit of 100, 10, 1		0000	$\bullet \bullet 0 \bullet$	first
- Total - Sum of		\bigcirc	-0000	

before moving on to place value counters or unmarked counters

Regrouping

Pictorial \quad Abstract

116 add128. That rounds to 120 add 130 so the answer will be close to 250 .

116 $+128$

14
30 $\frac{200}{244}$

7 add 6 is 13.3 ones and carry the 10.40 add 40 is 80 . Add 10 is 90 . 600 add 200 is 800.893

Yr3 Formal Subtraction

National Curriculum Program of Study Statement

- to add and subtract numbers with up to three digits, using formal written methods of column addition and subtraction

Big Ideas

- Understanding of a unit of 1,10 and 100. To know that 10 ones is equal to 1 ten and so can be exchanged for 1 unit of 10
- To know the importance of rounding to estimate the answer.
Language
- Column addition/subtraction
- Formal written method
- Regroup
- Exchange/ carry
- Unit of $100,10,1$
- Total
- Sum of
- Calculation
- Inverse
- Estimate

Yr3 Formal Subtraction

National Curriculum Program of Study Statement
to add and subtract numbers with up to three digits, using formal written methods of column addition and subtraction

Big Ideas

- Understanding of a unit of 1,10 and 100. To know that 10 ones is equal to 1 ten and so can be exchanged for 1 unit of 10
To know the importance of rounding to estimate the answer
Pictorial \quad Abstract

Children can start their

 formal written method by partitioning the number into clear place value columns.

Moving forward the children use a more compact method.

Yr4 Addition

National Curriculum Program of Study Statement

- Add and subtract numbers with up to 4 digits using the formal written methods of column addition where appropriate.
- Estimate and use inverse operations to check answers to a calculation.
- Solve addition and subtraction two step problems in contexts, deciding which operations and methods to use and why

Language	Concrete	Pictorial	Abstract
- Column addition - Formal written method - Regroup - Exchange/ carry - Unit of 100, 10, 1 - Total - Sum of - Calculation - Inverse - Estimate			

Introduce decimals in the form of money

Yr4 Subtraction

National Curriculum Program of Study Statement

- Add and subtract numbers with up to 4 digits using the formal written methods of column addition where appropriate.
- Estimate and use inverse operations to check answers to a calculation.
- Solve addition and subtraction two step problems in contexts, deciding which operations and methods to use and why

Big Ideas

- It helps to round numbers before carrying out a calculation to get a sense of the size of the answer. For example, $4786-2135$ is close to $5000-2000$, so the answer will be around 3000
- Looking at the numbers in a calculation and their relationship to each other can help make calculating easier. Eg 1234+999 could be done mentally
$1234+1000=2234$
$2234-1=2233$

Language	Concrete	Pictorial	Abstract
- Column subtraction - Formal written method - Regroup - Exchange/ carry - Unit of $100,10,1$ - Total - Sum of - Calculation - Inverse - Estimate - difference	As with yr3 but up to 4-digit numbers Introduce decimal via money. Make the larger number with the place value counters nes, can Itake away 8 from 4 easily? I need to exchange one of my tens for ten ones. Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Some children will still use an expanded method Most children will now use a compact method

Yr 5 and 6 Addition

National Curriculum Program of Study Statement

- add and subtract whole numbers with more than 4 digits, including using formal written methods (column addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Big Ideas

Year 5

- Before starting any calculation is it helpful to think about whether or not you are confident that you can do it mentally. For example, $3689+4998$ may be done mentally, but $3689+4756$ may require paper and pencil.
- Carrying out an equivalent calculation might be easier than carrying out the given calculation. For example $3682-2996$ is equivalent to $3686-3000$ (constant difference).
Year 6
- Deciding which calculation method to use is supported by being able to take apart and combine numbers in many ways. For example, calculating $8 \cdot 78+5 \cdot 26$ might involve calculating $8.75+5.25$ and then adjusting the answer.
- The associative rule helps when adding three or more numbers: $367+275+525$ is probably best thought of as $367+(275+525)$ rather than $(367+275)+525$.

Language	Concrete	Pictorial		Abstract
integer decimal digits decimal place total column tenths hundredths thousandths aligned carry efficiency	as year 4 Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens 00000 000$\|$ones 00	tends hundredts 000 00000 $0+$ 00 00000 00060 00 0000 6	

Yr 5 and 6 Subtraction

onal Curriculum Program of Study Statement

－add and subtract whole numbers with more than 4 digits，including using formal written methods（columnar addition and subtraction）
－add and subtract numbers mentally with increasingly large numbers
－use rounding to check answers to calculations and determine，in the context of a problem，levels of accuracy
－solve addition and subtraction multi－step problems in contexts， deciding which operations and methods to use and why．

Big Ideas

Year 5
－Pupils should be able to subtract numbers with at least 4 digits using the compact column method
－Pupils should be able to subtract with decimals values，including mixtures of integers and decimals，aligning the decimal point（e．g．subtract a decimal from a whole number）
Year 6
－Pupils should be able to subtract more complex integers using the compact column method
－Pupils should be able to subtract decimals with different number of decimals places using the compact column method

Language	Concrete	Pictorial	Abstract
minus subtract difference	see year 4 234－179 Model process of exchange using Numi－ con，base ten and then move to PV coun－ ters．	Children to draw pv counters and show their exchange－see Y3	

Yr R Multiplication

ELG Expected Criteria:

- solve problems involving doubling, halving and sharing

Although there is no explicit reference to multiplication within the current ELG for number, exposure to lots of practical experiences of counting repeated groups and learning the language necessary for multiplication would be expected.

Language	Concrete	Pictorial	Abstract
Lots of Groups of add same again	$4+4+4$ 3 lots of 4 or three 4's 2 conkers in each group. Five groups altogether. $2+2+2+2+2$ 4 pairs of wellies. Four groups of 2 . Five fingers on each hand. Two hands both with 5 fingers. Two lots of 5 . $5+5$. Five two times	Represent this pictorially alongside a numberline	$4+4+4=12$ 3 groups of $4=12$ altogether $5+5+5=15$ $5,10,15 \ldots$

Yr R Division

ELG Expected Criteria:

- Solve problems including doubling, halving and sharing.

Language	Concrete	Pictorial	Abstract
share half half spitt divide groups of part whole	Opportunities where language can be modelled and used in a meaningful way: Snack time - sharing out fruit. eg 7 apples for 14 people. birthday cake sharing limited toys eg cars. mud kitchen play cars and passengers		

Yr 1 Multiplication and Division

National Curriculum Program o Count in 10s, fives and twos Solve one step problems invol concrete objects, pictorial repr support of the teacher	Study Statement ng multiplication and division, using sentations and arrays with the	Big Ideas Counting in steps of equal sizes is based on the of, say, five objects as one unit of five. Working aware of the commutative property of multiplica	big idea of 'unitising' ; treating a group with arrays helps pupils to become ion, that 2×5 is equivalent to 5×2.
Language	Concrete	Pictorial	Abstract
Calculation, Calculate Odd, Even Multiply, Multiplication, Times, Product Repeated addition Array Divide, Division Equal groups Grouping Sharing into equal groups,			Share 9 buns between three people. $9 \div 3=3$

Yr 2 Multiplication and Division

tional Curriculum Program of Study Statement

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- show that multiplication of 2 numbers can be done in any order (commutative) and division of 1 number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Big Ideas
To commit facts to memory and develop an understanding of conceptual relationships.
To look for an recognise patterns in tables
To recognise multiplication and division as inverse and use this to help solve problems.
Recognise division as both grouping and sharing.
Use patterns in multiplication to help commit facts to memory eg halving a multiple of ten gives you a multiple of 5 .

Language	Concrete	Pictorial	Abstract
Double Times Multiply Groups of Lots of The Product of Share Group Divide Divided by Half Array remainder	Repeeted grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group. Number lines to show repeated groups3×4 \square \square Cuisenaire rods can be used too.	Children to represent the practical resources in a picture and use a bar model. Represent this pictorially alongside a number line e.g:	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$ Abstract number line showing three jumps of four. $3 \times 4=12$

Yr 3 Multiplication and Division

National Curriculum Program of Study Statement - recall and use multiplication and division facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including 2 -digit numbers times 1 -digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence - problems in which n objects are connected to mobjects		Big Ideas It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to work out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of 10x). They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication.	
Language	Concrete	Pictorial	Abstract
multiplication ,multiply, multiplied by, times multiple, factor product repeated addition			3 multiplied by 4 equals 12 12 divided by $4=3$ The product of 3 multiplied by 4 is 12 $\begin{aligned} & \begin{array}{l} 3+3+3+3=12 \\ 3 \times 4=12 \\ 4 \times 3=12 \\ 3 \times \square=12 \\ 3 \times n=12 \end{array} \\ & =12 \end{aligned}$ How many ways can you make 12 $A \times B=12$ What could A and $B=$

Yr 4 Multiplication and Division

National Curriculum Program of Study Statement

- recall multiplication and division facts for multiplication tables up to 12 $\times 12$
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply 2-digit numbers by 1-digit, integer scaling problems and harder
- correspondence problems such as n objects are connected to m objects

objects		equivalences.		
Language	Concrete	Pictorial		Abstract
Multiplication and division Multiplication, multiply multiplied by, multiple, factor groups of, times, product repeated addition array row, column number patterns multiplication table		$x \times x \times 3$ rows by $x \times x \times \quad 4$ rown $\times \times \times \times 4$ in ench $3 \times 4=12$		(As with yr3 but to 12×12) 3 multiplied by 4 equals 12 12 divided by $4=3$ The product of 3 multiplied by 4 is 12 $\begin{aligned} & 3+3+3+3=12 \\ & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 3 \times \square=12 \end{aligned}$ $3 x n=12$ How many arrays can you make

Yr 5 and 6 Division

National Curriculum Program of Study Statement

Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context

Language	Concrete	Pictorial	Abstract
Share Divide group quotient remainder		Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder $\begin{array}{rrr} 2 & 1 & 8 \\ \hline & \begin{array}{lll} 3 \\ 8 & 7 & 2 \end{array} \end{array}$ Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately. $8 \longdiv { 0 6 6 3 } \frac { 5 } { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }$

Year 5 and 6 Division

Long Division - a remainder in the ones

$$
\begin{gathered}
h 10 \\
4 \longdiv { 0 4 1 R 1 } \\
4 \longdiv { 1 6 5 }
\end{gathered}
$$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times
4 goes into 5 once, leaving a remainder of 1.

> thto $0 4 \longdiv { 3 2 0 0 7 7 }$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Year 5 and 6 Division

Long Division - a remainder in the ones - continued

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check $4 \times 61+3=247$
th h to
$4 \begin{array}{r}0402 \\ 1609 \\ \frac{-8}{1}\end{array}$
When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Year 5 and 6 Division

Long Division - a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} 10 \\ 2 \longdiv { 2 } \\ \hline 58 \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainderl	$\begin{gathered} 10 \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} 1 \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \\ -18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \\ \hline 18 \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -48 \\ -18 \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Year 5 and 6 Division

Long Division - a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\frac{1^{n 50}}{2 \longdiv { \underline { 2 } 7 8 }}$ Two poes into 2 one time, or 2 hundreds : 2-1 hundred.	$2 \frac{1}{\frac{h}{278}}$ Multiply $1 \times 2-2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h 10 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zera.
Divide.	Muitiply E s subtract	Drop down the next digit.
$\begin{gathered} h t 0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \end{gathered}$ Divide 2 inda 7. Place 3 inta the quotient.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 5 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder af 1 ten .	$\begin{gathered} h 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} n 80 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 16 . Place 9 into the quotient.	$\begin{array}{r} h \pm 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 18 \\ -18 \\ 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & n+0 \\ & 2 \longdiv { 1 3 9 } \\ & -278 \\ & -\frac{2}{0} \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

Yr 5/6 Multiplication

National Curriculum Program of Study Statement

- multiply numbers up to four digits by a 1 or 2-digit number using a formal written method, including long multiplication for 2-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- multiply 1-digit numbers with up to two decimal places by whole numbers (Year 6 FDP only)

Language	Concrete
Multiply Multiplication Product Times Lots of	
	Without exchanging
	e.g. $1323 \times 3-$ make 3 lots of 1323
	(100)(100) (100) (100) (10) (1)
	Use place value counters to reinforce.
	With exchanging e.g. 1324×3 - make 3 lots of 1324

Big Ideas

Pupils have a firm understanding of what multiplication and division mean and have a range of strategies for dealing with large numbers, including both mental and standard written methods. They see the idea of factors, multiples and prime numbers as connected and not separate ideas to learn.
They recognise how to use their skills of multiplying and dividing in new problem solving situations. Fractions and division are connected ideas: $36 \div 18=36 / 18=2 ; 18 / 36=1 / 2$
Factors and multiples are connected ideas: 48 is a multiple of 6 and 6 is a factor of 48 .

Pictorial

Progression to a model that uses the 'area of a rectangle'.
Children to draw the rectangles. Often called 'Grid method' e.g. $23 \times 4=92$

1

Abstract

If not secure, use expanded method to understand the methods.

234

$\times \quad 7$	
28	(4×7)
210	(30×7)
1400	(200×7)
1638	

Move on to compact written method.

Understand and use the formal method of long multiplication and explain 'why' the zero is included.

Yr 1 Fractions

National Curriculum Program of Study Statement Recognise, find and name a half as one of two equal parts of an object, shape or quantity. Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.		Big Ideas Fractions express a relationship between a whole and equal parts of the whole. Ensure children express this relationship when talking about fractions. For example, If the circle (where the circle is divided into four equal parts with one part shaded) is the whole, one part is one quarter of the whole circle.' Halving involves partitioning an object, shape or quantity into two equal parts. The two parts need to be equivalent in, for example, area, mass or quantity.	
Language	Concrete	Pictorial	Abstract
Part Equal Whole Half, halves Quarter Fraction	Folding shapes into 2 equal parts Halving real objects such as cake, pizza Emphasis that each part is equal for it to be a half, quarter Sorting groups of objects into 2 equal groups	Shading half, quarter of shapes Understanding misconceptions: Which of these show half of each whole shape? Explain your reasoning. Children should talk about the two parts needing to be equal parts of the whole. \square	Word problems discussing together Such as There are 12 children in a class. Sammy says half of the class is 7 . Do you agree? Explain your reasoning.

Yr 2 Fractions

National Curriculum Program of Study Statement

Big Ideas

The Big Ideas Fractions involve a relationship between a whole and parts of a whole. Ensure children express this relationship when talking about fractions.
For example, 'If the bag of 12 sweets is the whole, then 4 sweets are one third of the whole.' Partitioning or 'fair share' problems when each share is less than one gives rise to fractions. Measuring where the unit is longer than the item being measured gives rise to fractions.

- recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity

Language	Concrete	Pictorial	Abstract
Part Equal Equivalent Whole Half, halves Quarter Fraction Three quarters	Children split shapes into 2 or 4 equal parts Children share out objects into 2,3 or 4 equal groups		2 halves make a whole 4 quarters make a whole $\begin{aligned} & 1 / 2+1 / 2=1 \\ & 1 / 4+1 / 4+1 / 4+1 / 4=1 \end{aligned}$ $\begin{aligned} & 12 \div 2=6 \\ & 2 \times 6=12 \\ & 12 \div 4=3 \\ & 3 \times 4=12 \end{aligned}$

Children find $3 / 4$ of a shape or number. $\begin{array}{c\|c} c & 00 \\ c & 00 \end{array}$ Understand that $2 / 4$ is equivalent to $1 / 2$ To understand whole and parts. To be able to count in halves or quarters.	$\begin{gathered} 10100 \\ 2 \frac{1}{2} \end{gathered}$	$3 / 4$ of $12=9$ $1 / 2$ of $8=2 / 4$ of 8 2 and a half is the same as $51 / 2 \mathrm{~s}$ $1 / 2,1,1^{112}, 2,2^{1 / 2}$

Yr 3 Fractions (including Decimals)

National Curriculum Program of Study Statement
Pupils should be taught to:

- find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- add and subtract fractions with the same denominator within one whole (for example, $5 / 7+1 / 7=6 / 7$)
- compare and order unit fractions, and fractions with the same denominator
- count up and down in tenths;
- recognise that tenths arise from dividing an object into ten equal parts and in dividing 1-digit numbers or quantities by ten recognise,
- denominators solve problems that involve all of the above

Language	Concrete	Pictorial	Abstract	
Fraction, equivalent fraction, mixed number, numerator, denominator, equal part, equal grouping, equal sharing, parts of a whole, half, two halves, one of two equal parts,				

Problem Solving:

I have 8 cakes. If $2 / 8$ are chocolate and $3 / 8$ are vanilla. How many are lemon?
I have 12 stickers $2 / 3$ are red. How many are blue
Sarah ate $2 / 8$ of ham pizza and $3 / 8$ of margarita. How much did she eat all together

This is 0.4 or $\frac{2}{5}$ of a bag of marbles. How many marbles are in a full bag?

What fraction of the square is shaded?
Explain your reasoning.

Only a fraction of each line is shown. The rest is hidden behind the blue screen. Which whole line is the longer?

Yr 4 Fractions (including Decimals \& Percentages)

National Curriculum Program of Study Statement

- recognise and show, using diagrams, families of common equivalent fractions
- count up and down in hundredths; recognise that hundredths arise when dividing an object by a hundred and dividing tenths by ten
- solve problems involving increasingly harder fractions to calculate quantities, including non-unit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundredths
- recognise and write decimal equivalents to $1 / 4 ; 1 / 2,3 / 4$
- find the effect of dividing a one or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with one decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to two decimal places
- solve simple measures and money problems involving fractions and decimals to two decimal places

| Language | Concrete | Pictorial |
| :--- | :--- | :--- | :--- |
| Fraction,
 equivalent fraction,
 mixed number,
 numerator, denominator,
 equal part, equal grouping, equal
 sharing, parts of a whole,
 half, two halves,
 one of two equal parts,
 quarter, two quarters, three
 quarters, one of four equal parts,
 one third, two thirds, one of three
 equal parts, sixths, sevenths, | Write the equivalent fractions shown in each
 pair of diagrams | |

Problem Solving:

To find fractions of quantities:

1. There are 27 children in a class. Eight ninths are at school. How many children are absent?
2. There are 48 children in Year 4. Three eighths of the children walk to school. One third come by car. The rest cycle. How many cycle to school?

To compare and order decimals:

1. What number lies half way between 5 and 5.4 ?

To use conversion of measures to solve problems:

1. Arlene's finger is 8.3 cm long. Chandra's is 9 mm shorter. How long is Chandra's finger.

To solve problems that involve fractions of measures:

1. A 1 km length of road has lamp posts every $1 / 4 \mathrm{~km}$. How many metres is it from the start of the road to the $3 / 4 \mathrm{~km}$ post?
2. One-quarter of me is 10 metres. What am I?

To solve simple money problems involving decimals to two places (using mental methods and all four written methods):

1. A blue jacket costs $£ 58.39$. A green jacket costs $£ 17.36$ more than the blue. How much does the green jacket cost?
2. Theatre tickets cost $£ 35$. Children pay half price. What is the cost of tickets for two adults and three children?

Problems in the form of puzzles:

challenge 1

- I am less than double 4 .
- I am a mixed number.
- 1 am closer to 3 than to 5 .

challenge 2
- I am more than half of 6
- Iam less than 9 .
- I am more than 2 amber.

Yr 5 and 6 Fractions

National Curriculum Program of Study

 Statement
Year 5

- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.
- Compare and order fractions whose denominators are all multiples of the same number
- Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements >1 as a mixed number.
- Add and subtract fractions with the same denominators and denominators that are multiples of the same numbers.
- Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.
- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.
- Recognise \% symbol and understand the meaning: write \% as a fraction, decimal and percentage.

Year 6

- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
- Compare and order fractions, including fractions >1.
- Use factors to simplify fractions; use common multiples to express fractions in the same denominator.
- Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=18$]; divide proper fractions by whole numbers [for example, 1 / $3 \div 2=1 / 6]$
- Divide proper fractions by whole numbers.
- Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.
- Associate fractions with division and calculate decimal fraction equivalents.

Big Ideas

Representations that may appear different sometimes have similar underlying ideas. For example $1 / 4,0.25$ and 25% are used in different contexts but are all connected to the same idea. Pupils should understand that percentages, decimals and fractions are different ways of expressing proportions.

Fractions express a relationship between a whole and equal parts of a whole. Pupils should recognise this and speak in full sentences when answering a question involving fractions. For example, in response to the question 'What fraction of the journey has Tom travelled?' the pupil might respond, 'Tom has travelled two thirds of the whole journey.' Equivalent fractions are connected to the idea of ratio: keeping the numerator and denominator of a fraction in the same proportion creates an equivalent fraction. Putting fractions in place on the number lines helps understand fractions as numbers in their own right.

Adding and subtracting fractions should become fluent through solving a variety of increasingly complex problems. Understanding is extended to understand adding and subtracting fractions in calculations that exceed 1 as a mixed number

Connections should be made between division and converting improper fractions to mixed numbers eg 6/2 as a mixed number is $6 \div 2=3$. Connections should also be made between division and multiplying by a fraction eg x $1 / 3=\div$ by 3 .

Language	Concrete	Pictorial	Abstract
Part Simplify Equivalent Whole Equivalence Simplest form Equal parts Numerator Denominator Mixed number Improper fraction Unit fraction Non-unit fraction Common	Year 5	- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. - Compare and order fractions whose denominators are all multiples of the same number	$\begin{gathered} \frac{3}{5}=\frac{6}{10}=\frac{60}{100} \\ \frac{3}{4}=\frac{75}{100} \\ \frac{1}{5}=\frac{2}{10}=\frac{20}{100} \end{gathered}$

